Lesson at a Glance

- 1. In a polynomial p(x), the highest exponent of x is called the degree of the polynomial.
- 2. Polynomials of degrees 1, 2 and 3 are called linear, quadratic and cubic polynomials respectively.
- 3. If p(x) is a polynomial in x, and if k is any real number, then the value obtained by replacing x by k in p(x), is called the value of p(x) at x = k, and is denoted by p(k).
- **4.** If on substituting x = k in a polynomial p(x), we get p(k) = 0, then k is said to be a zero of the polynomial.
- 5. Every real number is a constant polynomial.
- 6. 0 is the zero polynomial.
- 7. The degree of a non-zero constant polynomial is zero.
- 8. Polynomials of one term, two terms and three terms are called monomial, binomial and trinomial respectively.
- 9. $2x^3 + 5x^2 7x + \sqrt{3}$ is a polynomial in the variable x of degree 3.
- 10. $x^{5/2} + x^2 7x + 3$ is not a polynomial.
- 11. If the graph of a polynomial intersects x-axis at n points, then the number of zeroes of the polynomial is n.
- 12. If a linear polynomial is p(x) = ax + b, then zero of the polynomial

$$= \frac{-(\text{Constant term})}{\text{Coefficient of } x} = \frac{-b}{a}.$$

13. If a quadratic polynomial is $p(x) = ax^2 + bx + c$, then

Sum of zeroes =
$$\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2} = \frac{-b}{a}$$

Product of zeroes =
$$\frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{c}{a}$$
.

14. If a cubic polynomial is $p(x) = ax^3 + bx^2 + cx + d$, then

Sum of zeroes =
$$\frac{-(\text{Coefficient of } x^2)}{\text{Coefficient of } x^3} = \frac{-b}{a}$$

Sum of the product of zeroes taken two at a time

$$= \frac{\text{Coefficient of } x}{\text{Coefficient of } x^2} = \frac{c}{a}.$$

Product of zeroes =
$$\frac{-(\text{Constant term})}{\text{Coefficient of } x^2} = \frac{-d}{a}$$
.

15. If one polynomial p(x) is divided by the other polynomial $g(x) \neq 0$, then the relation among p(x), g(x), quotient q(x) and remainder r(x) is given by

$$p(x) = g(x) \times q(x) + r(x)$$
, where degree of $r(x)$ < degree of $g(x)$.

i.e., Dividend = Divisor × Quotient + Remainder

- 16. A linear polynomial has at most 1 zero.
- 17. A quadratic polynomial has at most 2 zeroes.
- 18. A cubic polynomial has at most 3 zeroes.

TEXTBOOK QUESTIONS SOLVED

Exercise 2.1 (Page – 28)

1. The graphs of y = p(x) are given in figure below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Sol. (i) As the graph of polynomial does not meet x-axis, so the polynomial has no zeroes.

- (ii) As the graph of polynomial cuts (meets) x-axis only once, so the polynomial has exactly one zero.
- (iii) As the graph of polynomial cuts (meets) x-axis thrice, so the polynomial has three zeroes.
- (iv) As the graph of polynomial cuts (meets) x-axis twice, so the polynomial has exactly two zeroes.
- (v) As the graph of polynomial cuts (meets) x-axis four times, so the polynomial has four zeroes.
- (vi) As the graph of polynomial cuts (meets) x-axis three times, so the polynomial has three zeroes.

Exercise 2.2 (Page - 33)

- 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $x^2 2x 8$ (ii) $4s^2 4s + 1$ (iii) $6x^2 3 7x$
 - (iv) $4u^2 + 8u$ (v) $t^2 15$ (vi) $3x^2 x 4$
- **Sol.** (i) Consider polynomial $x^2 2x 8 = (x 4)(x + 2)$ For zeroes, x - 4 = 0, x + 2 = 0 $\Rightarrow x = 4, -2$

Zeroes of the polynomial are 4 and -2.

Sum of zeroes =
$$4 + (-2) = 2$$

= $\frac{-(-2)}{1} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$

Product of zeroes = $4 \times (-2) = -8$ = $\frac{-8}{1}$ = $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Hence verified

- (ii) Consider polynomial $4s^2 4s + 1 = (2s 1)^2$ For zeroes, $4s^2 - 4s + 1 = 0$ $\therefore (2s - 1)^2 = 0$
 - $\Rightarrow \qquad 2s-1=0 \Rightarrow s=\frac{1}{2}.$
 - \therefore Polynomial has equal zeroes, *i.e.*, $\frac{1}{2}$ and $\frac{1}{2}$.

Sum of zeroes =
$$\frac{1}{2} + \frac{1}{2} = 1 = \frac{4}{4}$$

= $-\frac{(-4)}{4} = -\frac{\text{Coefficient of s}}{\text{Coefficient of s}^2}$

Product of zeroes = $\frac{1}{2}$. $\frac{1}{2}$ = $\frac{1}{4}$ = $\frac{Constant\ term}{Coefficient\ of\ s^2}$.

Hence verified.

(iii) Consider polynomial $6x^2 - 3 - 7x = 6x^2 - 7x - 3$ = $6x^2 - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3)$ = (2x - 3)(3x + 1)

For zeroes,
$$2x - 3 = 0$$
, $3x + 1 = 0$.

$$\Rightarrow x = \frac{3}{2}, -\frac{1}{3}$$

$$\Rightarrow$$
 Zeroes of polynomial are $\frac{3}{2}$ and $-\frac{1}{3}$.

Sum of zeroes =
$$\frac{3}{2} - \frac{1}{3} = \frac{7}{6} = \frac{-(-7)}{6}$$

= $-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$

Product of zeroes =
$$\frac{3}{2} \times \frac{(-1)}{3}$$

= $\frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } r^2}$

Hence verified.

(iv) Consider polynomial $4u^2 + 8u = 4u(u + 2)$.

$$4u(u+2)=0$$

$$\Rightarrow$$

$$u = 0 \text{ or } u + 2 = 0$$

 \therefore Zeroes of the polynomial are 0 and -2.

Sum of zeroes =
$$0 + (-2) = -\frac{8}{4}$$

= $\frac{-\text{Coefficient of } u}{\text{Coefficient of } u^2}$

Product of zeroes =
$$0 \times (-2) = 0 = \frac{0}{4}$$

$$= \frac{\text{Constant term}}{\text{Coefficient of } u^2}$$

Hence verified.

(v) Consider polynomial $t^2 - 15 = (t - \sqrt{15})(t + \sqrt{15})$

For zeroes, $(t - \sqrt{15})(t + \sqrt{15}) = 0$

$$\Rightarrow t - \sqrt{15} = 0, t + \sqrt{15} = 0$$

$$\Rightarrow t = \sqrt{15}, t = -\sqrt{15}$$

 \therefore Zeroes of the polynomial are $\sqrt{15}$ and $-\sqrt{15}$.

Sum of zeroes =
$$\sqrt{15}$$
 + $(-\sqrt{15})$ = 0
= $-\frac{0}{1}$ = $-\frac{\text{Coefficient of } t}{\text{Coefficient of } t^2}$

Product of zeroes =
$$(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1}$$

 $= \frac{\text{Constant term}}{\text{Coefficient of } t^2}$ Hence verified.

(vi) Consider polynomial
$$3x^2 - x - 4 = 3x^2 - 4x + 3x - 4$$

 $= x(3x - 4) + 1(3x - 4) = (x + 1)(3x - 4)$
For zeroes, $(x + 1)(3x - 4) = 0$
 $\Rightarrow x + 1 = 0, 3x - 4 = 0$
 $\Rightarrow x = -1, \frac{4}{3}$

 \therefore Zeroes of the polynomial are -1 and $\frac{4}{3}$.

Sum of zeroes =
$$-1 + \frac{4}{3} = \frac{1}{3} = -\frac{(-1)}{3}$$

= $-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$.

Product of zeroes =
$$(-1)\left(\frac{4}{3}\right) = \frac{-4}{3}$$

$$= \frac{\text{Constant term}}{\text{Coefficient of } r^2}.$$

Hence verified.

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$

(iv) 1, 1 (v)
$$-\frac{1}{4}$$
, $\frac{1}{4}$ (vi) 4, 1.

Sol. (i) Let polynomial be $f(x) = ax^2 + bx + c$...(i)

...(ii)

Sum of zeroes
$$= \frac{1}{4} = -\frac{(-1)}{4} = -\frac{b}{a}$$

Product of zeroes
$$= -1 = \frac{-4}{4} = \frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 4, b = -1, c = -4.$$

Substituting these values in equation (i), we get

Polynomial $f(x) = 4x^2 - x - 4$.

We can have infinite such polynomials as $f(x) = k(4x^2 - x - 4)$, k is a real number.

(ii) Let polynomial be
$$f(x) = ax^2 + bx + c$$
 ...(i)

Sum of zeroes
$$= \sqrt{2} = -\frac{(-3\sqrt{2})}{3}$$
$$= -\frac{b}{a} \qquad ...(ii)$$

Product of zeroes
$$=\frac{1}{3}=\frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 3, b = -3\sqrt{2}, c = 1.$$

Substituting these values in equation (i), we get

Polynomial $f(x) = 3x^2 - 3\sqrt{2}x + 1$.

or $f(x) = k(3x^2 - 3\sqrt{2}x + 1)$, k is a real number.

(iii) Let polynomial be
$$f(x) = ax^2 + bx + c$$
 ...(i)

Sum of zeroes
$$= 0 = -\frac{(-0)}{1} = -\frac{b}{a}$$
 ...(*ii*)

Product of zeroes =
$$\sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 1, b = 0, c = \sqrt{5}$$

Substituting these values in equation (i), we get

Polynomial $f(x) = x^2 + \sqrt{5}$.

or $f(x) = k(x^2 + \sqrt{5})$, k is a real number.

(iv) Let polynomial be
$$f(x) = ax^2 + bx + c$$
 ...(i)

Sum of zeroes
$$= 1 = \frac{1}{1} = -\frac{(-1)}{1}$$

$$= -\frac{b}{a} \qquad \dots (ii)$$

Product of zeroes
$$= 1 = \frac{1}{1} = \frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 1, b = -1, c = 1.$$

Substituting these values in equation (i), we get Polynomial $f(x) = x^2 - x + 1$.

or $f(x) = k(x^2 - x + 1)$, k is a real number.

(v) Let polynomial be
$$f(x) = ax^2 + bx + c$$
 ...(i)

Sum of zeroes
$$= -\frac{1}{4} = -\frac{1}{4} = -\frac{b}{a}$$
 ...(ii)

Product of zeroes
$$=\frac{1}{4}=\frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 4, b = 1, c = 1$$

Substituting these values in equation (i), we get Polynomial $f(x) = 4x^2 + x + 1$.

or $f(x) = k(4x^2 + x + 1)$, k is a real number.

(vi) Let polynomial be
$$f(x) = ax^2 + bx + c$$
 ...(i)

Sum of zeroes
$$= 4 = -\frac{(-4)}{1} = -\frac{b}{a}$$
 ...(ii)

Product of zeroes
$$= 1 = \frac{1}{1} = \frac{c}{a}$$
 ...(iii)

From equations (ii) and (iii), we get

$$a = 1, b = -4, c = 1$$

Substituting these values in equation (i), we get Polynomial $f(x) = x^2 - 4x + 1$.

or $f(x) = k(x^2 - 4x + 1)$, k is a real number.

Exercise 2.3 (Page – 36)

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$.

Sol. (i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
 and $g(x) = x^2 - 2$

We have quotient q(x) = x - 3 and remainder r(x) = 7x- 9.

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$.
 $x^2 + x - 3$

$$x^2-x+1$$

$$x^{2} + x - 3$$

$$x^{4} - 3x^{2} + 4x + 5$$

$$x^{4} + x^{2} - x^{3}$$

$$- - +$$

$$x^{3} - 4x^{2} + 4x + 5$$

$$x^{3} - x^{2} + x$$

$$- + -$$

$$- 3x^{2} + 3x + 5$$

$$- 3x^{2} + 3x - 3$$

$$+ - +$$

$$x^{3} - 4x^{2} + 4x + 5$$
Second term of quotient
$$= \frac{x^{3}}{x^{2}} = x$$
Third term of quotient
$$= \frac{-3x^{2}}{x^{2}} = -3$$

 \therefore Quotient $q(x) = x^2 + x - 3$; remainder r(x) = 8.

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

- \therefore Quotient $q(x) = -x^2 2$. remainder r(x) = -5x + 10.
- 2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2 - 3$$
, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

$$(ii)$$
 $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$.

(i) Let $p(t) = 2t^4 + 3t^3 - 2t^2 - 9t - 12$, $g(t) = t^2 - 3$ Sol. Let us divide p(t) by g(t)

Let us divide
$$p(t)$$
 by $g(t)$

$$2t^{2} + 3t + 4$$

$$t^{2} - 3 \overline{)2t^{4} + 3t^{3} - 2t^{2} - 9t - 12}$$

$$2t^{4} - 6t^{2}$$

$$- + = \frac{2t^{4}}{t^{2}} = 2t^{2}$$

$$3t^{3} + 4t^{2} - 9t - 12$$

$$3t^{3} - 9t$$

$$- + = \frac{3t^{3}}{t^{2}} = 3t$$

$$4t^{2} - 12$$

$$4t^{2} - 12$$

$$- + = 0$$
Third term of quotient
$$= \frac{4t^{2}}{t^{2}} = 4$$

Here, quotient $q(t) = 2t^2 + 3t + 4$, remainder r(t) = 0. As remainder is 0. Hence, $t^2 - 3$ is a factor of the polynomial

$$2t^4 + 3t^3 - 2t^2 - 9t - 12$$
.

$$p(x) = 3x^4 + 5x^3 - 7x^2 + 2x + 2 \text{ by } q(x) = x^2 + 3x + 1.$$
$$3x^2 - 4x + 2$$

$$\begin{array}{r}
x^2 + 3x + 1 \\
3x^4 + 5x^3 - 7x^2 + 2x + 2 \\
3x^4 + 9x^3 + 3x^2 \\
- - - - \\
- 4x^3 - 10x^2 + 2x + 2 \\
- 4x^3 - 12x^2 - 4x \\
+ + + + \\
2x^2 + 6x + 2 \\
2x^2 + 6x + 2 \\
- - - - \\
0
\end{array}$$

First term of quotient

$$=\frac{3x^4}{x^2}=3x^2$$

Second term of quotient

$$=\frac{-4x^3}{x^2}=-4x$$

Third term of quotient

$$=\frac{2x^2}{x^2}=2$$

Here, quotient
$$q(x) = 3x^2 - 4x + 2$$
,

remainder
$$r(x) = 0$$

We have
$$3x^4 + 5x^3 - 7x^2 + 2x + 2$$

= $(x^2 + 3x + 1)(3x^2 - 4x + 2) + 0$

As remainder is zero. Hence, first polynomial is a factor of the second polynomial.

(iii) Let $p(x) = x^5 - 4x^3 + x^2 + 3x + 1$, $g(x) = x^3 - 3x + 1$ Let us divide p(x) by q(x).

$$x^2 - 1$$

$$x^{3} - 3x + 1$$

$$x^{5} - 4x^{3} + x^{2} + 3x + 1$$
First term of quotient
$$x^{5} - 3x^{3} + x^{2}$$

$$- + -$$

$$- x^{3} + 3x + 1$$

$$- x^{3} + 3x - 1$$

$$+ - +$$

$$2$$
First term of quotient
$$= \frac{x^{5}}{x^{3}} = x^{2}$$
Second term of quotient
$$= \frac{-x^{3}}{x^{3}} = -1$$

Here, quotient $q(x) = x^2 - 1$, remainder r(x) = 2

As remainder is not zero.

Hence, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$.

- **3.** Obtain all other zeroes of $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
- **Sol.** Two zeroes of polynomial $3x^4 + 6x^3 2x^2 10x 5$ are

$$x = \sqrt{\frac{5}{3}}$$
 and $x = -\sqrt{\frac{5}{3}}$

 \therefore $(\sqrt{3}x - \sqrt{5})$ and $(\sqrt{3}x + \sqrt{5})$ are factors of the polynomial

$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$

 \Rightarrow $(\sqrt{3}x - \sqrt{5})(\sqrt{3}x + \sqrt{5}) = 3x^2 - 5$ is a factor of the polynomial

$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Let us use division algorithm to find other zeroes.

Dividing $3x^4 + 6x^3 - 2x^2 - 10x - 5$ by $(3x^2 - 5)$

$$x^2 + 2x + 1$$

$$3x^{2} - 5$$

$$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5$$

$$3x^{4} - 5x^{2}$$

$$- + = \frac{3x^{4}}{3x^{2}} = x^{2}$$

$$6x^{3} + 3x^{2} - 10x - 5$$

$$6x^{3} - 10x$$

$$- + = \frac{6x^{3}}{3x^{2}} = 2x$$

$$3x^{2} - 5$$

$$3x^{2} - 5$$

$$- + = \frac{3x^{2}}{3x^{2}} = 1$$
First term of quotient
$$= \frac{3x^{4}}{3x^{2}} = x^{2}$$
Second term of quotient
$$= \frac{6x^{3}}{3x^{2}} = 2x$$
Third term of quotient
$$= \frac{3x^{2}}{3x^{2}} = 1$$

By division algorithm, we have

$$3x^4 + 6x^3 - 2x^2 - 10x - 5 = (3x^2 - 5)(x^2 + 2x + 1)$$
$$= (3x^2 - 5)(x + 1)^2$$

Other zeroes of the polynomial are -1, -1.

[By using x + 1 = 0]

Hence, zeroes of the polynomial

$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
 are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -1 and -1 .

4. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Sol. We have
$$p(x) = x^3 - 3x^2 + x + 2$$
, $g(x)$, $q(x) = x - 2$ and $r(x) = -2x + 4$.

Using division algorithm, we have

$$p(x) = g(x) \times q(x) + r(x)$$

$$\Rightarrow x^3 - 3x^2 + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$

$$\Rightarrow x^3 - 3x^2 + x + 2 + 2x - 4 = g(x) \times (x - 2)$$

$$\Rightarrow g(x) \times (x - 2) = x^3 - 3x^2 + 3x - 2$$

$$g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2}$$

First term of quotient

$$= \frac{x^3}{x} = x^2$$

Second term of quotient

$$=\frac{-x^2}{x}=-x$$

Third term of quotient

$$= \frac{x}{x} = 1$$

Hence, $g(x) = x^2 - x + 1$.

- **5.** Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
 - (i) $deg \ p(x) = deg \ q(x)$
- (ii) $deg \ a(x) = deg \ r(x)$

- (iii) deg r(x) = 0
- **Sol.** (i) Let $p(x) = 3x^2 + 6x 11$ and g(x) = 3

Then
$$q(x) = x^2 + 2x - 3$$
, $r(x) = -2$
Here, $\deg p(x) = \deg q(x)$

- (ii) Let $p(x) = x^3 + 6x^2 + 5x$ and $g(x) = x^2 + 2$ Then q(x) = x + 6, r(x) = -x - 12Here, deg $q(x) = \deg r(x)$.
- (iii) Let $p(x) = 3x^3 + 5x^2 6x + 7$ and g(x) = x 1Then $q(x) = 3x^2 + 8x + 2$, r(x) = 9Here, deg r(x) = 0

Note: Each of (i), (ii) and (iii) has several examples.

Exercise 2.4 (Page - 36-37)

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2, 1, 1

Sol. (i) Let $p(x) = 2x^3 + x^2 - 5x + 2$

If $\frac{1}{2}$, 1, -2 are zeroes of p(x), then

$$p\left(\frac{1}{2}\right) = 0$$
, $p(1) = 0$ and $p(-2) = 0$.

Let us verify.

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5 \times \frac{1}{2} + 2$$

$$= \frac{2}{8} + \frac{1}{4} - \frac{5}{2} + 2$$

$$= \frac{2 + 2 - 20 + 16}{8} = \frac{0}{8} = 0.$$

$$p(1) = 2(1)^3 + (1)^2 - 5(1) + 2 = 2 + 1 - 5 + 2 = 0.$$

$$p(-2) = 2(-2)^3 + (-2)^2 - 5 \times (-2) + 2$$

$$= -16 + 4 + 10 + 2 = 0$$

Hence, we can say $\alpha = \frac{1}{2}$, $\beta = 1$, $\gamma = -2$ are zeroes of p(x).

Relationship:

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 - 2 = \frac{1}{2} - 1 = -\frac{1}{2}$$

$$= \frac{-\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2} \times 1 + 1 \times (-2) + (-2) \times \frac{1}{2}$$

$$= \frac{1}{2} + (-2) - 1 = -\frac{5}{2} = \frac{-5}{2}$$

$$= \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

and
$$\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = -1 = -\frac{(2)}{2}$$

$$= -\frac{\text{Constant term}}{\text{Coefficient of } x^3}.$$

Hence, relationship is verified

(ii) Let
$$q(x) = x^3 - 4x^2 + 5x - 2$$

If 2, 1 and 1 are zeroes of q(x), then q(2) = 0 and q(1) = 0.

Let us verify.

Now
$$q(2) = (2)^3 - 4(2)^2 + 5(2) - 2 = 0 = 8 - 16 + 10 - 2 = 0$$

 $q(1) = (1)^3 - 4(1)^2 + 5(1) - 2 = 1 - 4 + 5 - 2 = 0$

Hence, verified.

Let $\alpha = 2$, $\beta = 1$, $\gamma = 1$.

Relationship:

Sum of zeroes = $\alpha + \beta + \gamma = 2 + 1 + 1 = 4$

$$= -\frac{(-4)}{1} = -\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$$

Sum of product of zeroes taken in pair

$$= \alpha\beta + \beta\gamma + \gamma\alpha = 2 + 1 + 2 = 5$$

$$= \frac{5}{1} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

Product of zeroes =
$$\alpha\beta\gamma = 2 = \frac{2}{1} = -\frac{(-2)}{1}$$

= $-\frac{\text{Constant term}}{\text{Coefficient of } r^3}$

Hence, relationship is verified.

- **2.** Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
- Sol. Let polynomial be $f(x) = ax^3 + bx^2 + cx + d$...(i) Let α , β and γ be the zeroes of the polynomial

Given,
$$\alpha + \beta + \gamma = 2 = \frac{-(-2)}{1} = -\frac{b}{a}$$
 ...(ii)

$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{-7}{1} = \frac{c}{a}$$
 ...(iii)

$$\alpha\beta\gamma = -14 = -\frac{14}{1} = -\frac{d}{a} \qquad ...(iv)$$

From (ii), (iii) and (iv), we have

or

$$a = 1, b = -2, c = -7, d = 14.$$

Substituting these values in (i), we get

$$f(x) = x^3 - 2x^2 - 7x + 14$$

$$f(x) = k(x^3 - 2x^2 - 7x + 14),$$

where k is a real number.

- 3. If the zeroes of the polynomial $x^3 3x^2 + x + 1$ are a b, a, a + b, find a and b.
- **Sol.** Let the given polynomial be $Ax^3 + Bx^2 + Cx + D$ Here, A = 1, B = -3, C = 1, D = 1Zeroes are a - b, a and a + b.

Sum of zeroes =
$$-\frac{B}{A}$$

 $\Rightarrow a-b+a+a+b=3$
 $\Rightarrow 3a=3 \Rightarrow a=1$.
Product of zeroes = $-\frac{D}{A}$
 $\Rightarrow (a-b) a (a+b) = -\frac{1}{1}$
 $\Rightarrow (1-b) \cdot 1 \cdot (1+b) = -1$

$$\Rightarrow 1 - b^2 = -1$$

$$\Rightarrow b^2 = 2 \Rightarrow b = \pm \sqrt{2}$$

Hence, a = 1, $b = \pm \sqrt{2}$.

4. If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

Sol. Given polynomial $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$

As two zeroes are $x = 2 \pm \sqrt{3}$.

So, $\{x - (2 + \sqrt{3})\}\ \{x - (2 - \sqrt{3})\}\$ is a factor of p(x). i.e., $(x^2 - 4x + 1)$ is a factor of p(x).

$$x^{2} - 2x - 35$$

$$x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$- + -$$

$$- 2x^{3} - 27x^{2} + 138x - 35$$

$$- 2x^{3} + 8x^{2} - 2x$$

$$+ - +$$

$$- 35x^{2} + 140x - 35$$

$$- 35x^{2} + 140x - 35$$

$$+ - +$$

$$0$$

First term of quotient

$$=\frac{x^4}{x^2}=x^2$$

Second term of quotient

$$=\frac{-2x^3}{x^2}=-2x$$

Third term of quotient

$$= \frac{-35x^2}{x^2} = -35$$

$$p(x) = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

For other zeroes, $x^2 - 2x - 35 = 0$.

$$\Rightarrow \qquad x^2 - 7x + 5x - 35 = 0$$

$$\Rightarrow \qquad x(x-7)+5(x-7)=0$$

$$\Rightarrow \qquad (x+5)(x-7)=0$$

$$\Rightarrow x + 5 = 0, x - 7 = 0$$

$$\Rightarrow \qquad x = -5, 7$$

Hence, other zeroes are - 5 and 7.

5. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol. When $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by $x^2 - 2x$ + k, remainder is x + a.

Using division algorithm,

$$x^4 - 6x^3 + 16x^2 - 25x + 10 = (x^2 - 2x + k) q(x) + (x + a)$$
, where $q(x)$ is quotient.

$$\Rightarrow x^4 - 6x^3 + 16x^2 - 26x + (10 - a) = (x^2 - 2x + k) \ q(x)$$

$$\Rightarrow x^2 - 2x + k \text{ is a factor of } x^4 - 6x^3 + 16x^2 - 26x + (10 - a).$$
First term

As remainder is zero,

$$\therefore (-10 + 2k)x + (k^2 - 8k + 10 - a) = 0$$

$$\therefore$$
 - 10 + 2k = 0 and $k^2 - 8k + 10 - a = 0$

$$\Rightarrow$$
 k = 5 and 25 - 40 + 10 - a = 0

$$\Rightarrow$$
 $k = 5$ and $a = -5$.

= (8 - k)